Inter-pulse interval between rectangular voltage pulses affects electroporation threshold of artificial lipid bilayers.

نویسندگان

  • Alenka Macek Lebar
  • Gregory C Troiano
  • Leslie Tung
  • Damijan Miklavcic
چکیده

This paper describes experiments that determine how the inter-pulse interval between rectangular pulses in a train of pulses alters the threshold of electroporation of 1-pamitoyl 2-oleoyl phosphatidycholine bilayer lipid membranes. The bilayers were exposed to a train of sixteen 100-micros duration pulses. Threshold voltage and the sequence number of the pulse in the train, where onset of the electroporation occurred, were recorded for six inter-pulse intervals (infinity, 1000 micros, 100 micros, 10 micros, 1 micros, 0 micros). The threshold voltage of the pulse train decreased linearly with the logarithm of the inter-pulse interval. When the inter-pulse interval was 1 microm, electroporation threshold dropped to that of a single pulse with duration 1600 micros (equal to the sum of all pulse durations in the train). In this case, the occurrence of bilayer rupture was almost equally frequent for all pulses in the train. When the inter-pulse interval between the pulses exceeded 1 micros, the influence of the previous pulse on the response to the following pulse declined. It became more likely that the bilayer ruptured during the first half of the train. These experimental observations suggest that a train of pulses applied with short inter-pulse interval (less than 1 ms) can lower the electroporation threshold of bilayer lipid membranes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Cell Size and Shape on Electric Field Threshold and Critical Transmembrane Voltage for Electroporation

Introduction:  Electroporation  is  a  technique  for  increasing  the  permeability  of  the  cell  membrane  to  otherwise  non-permeate  molecules  due  to  an  external  electric  field.  This  permeability  enhancement  is  detectable if the induced transmembrane voltage becomes greater than a critical value which depends on the  pulse  strength  threshold.  In  this  study,  the  variabil...

متن کامل

Determination of the lipid bilayer breakdown voltage by means of linear rising signal.

Electroporation is characterized by formation of structural changes within the cell membrane, which are caused by the presence of electrical field. It is believed that "pores" are mostly formed in lipid bilayer structure; if so, planar lipid bilayer represents a suitable model for experimental and theoretical studies of cell membrane electroporation. The breakdown voltage of the lipid bilayer i...

متن کامل

Theoretical analysis of localized heating in human skin subjected to high voltage pulses.

Electroporation, the increase in the permeability of bilayer lipid membranes by the application of high voltage pulses, has the potential to serve as a mechanism for transdermal drug delivery. However, the associated current flow through the skin will increase the skin temperature and might affect nearby epidermal cells, lipid structure or even transported therapeutic molecules. Here, thermal c...

متن کامل

Finite Element Analysis of Tissue Conductivity during High-frequency and Low-voltage Irreversible Electroporation

Introduction: Irreversible electroporation (IRE) is a process in which the membrane of the cancer cells are irreversibly damaged with the use of high-intensity electric pulses, which in turn leads to cell death. The IRE is a non-thermal way to ablate the cancer cells. This process relies on the distribution of the electric field, which affects the pulse amplitude, width, and electrical conducti...

متن کامل

Electroporation of Planar Lipid Bilayers and Membranes

Strong external electric field can destabilize membranes and induce formation of pores thus increasing membrane permeability. The phenomenon is known as membrane electroporation, sometimes referred to also as dielectric breakdown or electropermeabilization. The structural changes involving rearrangement of the phospholipid bilayer presumably lead to the formation of aqueous pores, which increas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE transactions on nanobioscience

دوره 1 3  شماره 

صفحات  -

تاریخ انتشار 2002